A Non-parametric Approach to Modeling Choice with Limited Data
ثبت نشده
چکیده
A central push in operations models over the last decade has been the incorporation of models of customer choice. Real world implementations of many of these models face the formidable stumbling block of simply identifying the ‘right’ model of choice to use. Thus motivated, we visit the following problem: For a ‘generic’ model of consumer choice (namely, distributions over preference lists) and a limited amount of data on how consumers actually make decisions (such as marginal information about these distributions), how may one predict revenues from offering a particular assortment of choices? We present a framework to answer such questions and design a number of tractable algorithms from a data and computational standpoint for the same. This paper thus takes a significant step towards ‘automating’ the crucial task of choice model selection in the context of operational decision problems.
منابع مشابه
Regression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملStochastic Non-Parametric Frontier Analysis
In this paper we develop an approach that synthesizes the best features of the two main methods in the estimation of production efficiency. Specically, our approach first allows for statistical noise, similar to Stochastic frontier analysis, and second, it allows modeling multiple-inputs-multiple-outputs technologies without imposing parametric assumptions on production relationship, similar to...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملData Envelopment Analysis with LINGO Modeling for Technical Educational Group of an Organization
Data Envelopment Analysis (DEA) was developed to help compare the relative performance of decision-making units. It is a non-parametric method for performing frontier analysis. It uses linear programming to estimate the efficiency of multiple decision-making units and it is commonly used in production, management and economics [3]. DEA generates an efficiency score between 0 and 1 for each unit...
متن کاملA new weighting approach to Non-Parametric composite indices compared with principal components analysis
Introduction of Human Development Index (HDI) by UNDP in early 1990 followed a surge in use of non-parametric and parametric indices for measurement and comparison of countries performance in development, globalization, competition, well-being and etc. The HDI is a composite index of three indicators. Its components are to reflect three major dimensions of human development: longevity, knowledg...
متن کاملBank efficiency evaluation using a neural network-DEA method
In the present time, evaluating the performance of banks is one of the important subjects for societies and the bank managers who want to expand the scope of their operation. One of the non-parametric approaches for evaluating efficiency is data envelopment analysis(DEA). By a mathematical programming model, DEA provides an estimation of efficiency surfaces. A major problem faced by DEA is that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011